Spaces of Singular Matrices and Matroid Parity
نویسندگان
چکیده
منابع مشابه
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولSingular spaces of matrices and their application in combinatorics
We study linear spaces of n × n matrices in which every matrix is singular. Examples are given to illustrate that a characterization of such subspaces would solve various open problems in combinatorics and in computational algebra. Several important special cases of the problem are solved, although often in disguise. 1. The problem Let A be a linear subspace of the space IR n×n of real n × n ma...
متن کاملMore about measures and Jacobians of singular random matrices
In this work are studied the Jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2002
ISSN: 0195-6698
DOI: 10.1006/eujc.2002.0573